
ISIT 2009, Seoul, Korea, June 28 - July 3,2009

Efficient Parametric Decoder of Low Density
Lattice Codes

Yair Yona
Dept. of EE-Systems
Tel-Aviv University

Tel-Aviv 69978, Israel
Email: yairyo@eng.tau.ac.il

Abstract-A new efficient parametric algorithm for implement­
ing the low density lattice codes belief propagation decoder is
presented. In the new algorithm the messages passed over the
edges are represented by Gaussian parameters lists, and the
decoding algorithm uses the low density lattice codes propagation
properties in order to group lists efficiently according to a
new criteria. The new algorithm attains essentially the same
performance as the quantized decoder, proposed in previous
work. The new algorithm advantage in comparison to previous
works is its smaller storage requirements and its relatively low
computational complexity.

Index Terms-Low Density Lattice Codes, Parametric ap­
proach, Efficient Decoding

I. INTRODUCTION

Low density lattice codes have been recently presented in
[1] and provide an efficient, capacity achieving scheme for
coded modulation. These lattice codes are designed directly in
the Euclidean space, by using a lattice in which the inverse of
its generating matrix is sparse. Interestingly, these codes were
shown to have high coding gain, while their "low density"
nature led to linear complexity iterative decoding algorithm.

The decoding algorithm presented in [1], while linear in
the block length, has still a high computational complexity,
and even worse, requires large storage. This is because the
messages in the iterative, message passing, algorithm are
continuous functions - the PDFs of the continuous codeword
samples. In [1], these functions are sampled and quantized
resulting in large storage requirements and computational
complexity that correspond to the sampling and quantization
resolution. Attempts to make the resolution coarser led to
degradation in performance. In [2] a parametric representa­
tion of the messages has been suggested, which decreases
significantly the storage requirements, but still has relatively
large linear complexity coefficient. Our work follows this
direction and presents an efficient decoding algorithm that uses
both the parametric representation and the understanding of
the code structure to come up with a very efficient scheme
(both in computation and storage) for implementing the belief
propagation decoder.

Specifically, in the new algorithm the messages passing
over the edges are represented by Gaussian parameters lists.
The decoding algorithm uses the low density lattice codes

Meir Feder
Dept. of EE-Systems
Tel-Aviv University

Tel-Aviv 69978, Israel
Email: meir@eng.tau.ac.il

propagation properties in order to group lists efficiently ac­
cording to a new criteria, based on locating the strongest
Gaussians in the lists, and grouping the strongest Gaussians
with Gaussians in its surrounding according to second mo­
ment matching method. As noted above, the new algorithm
advantage is its better storage requirements and the relatively
low computational complexity. Comparison between setups
that yield the same performance shows that the new algorithm
improves the storage requirements by more than two orders of
magnitude compared to [1], and improves the computational
complexity by more than an order of magnitude compared
to [2]. Experimental analysis of the proposed algorithm at
different block lengths (up to n == 100000), code degree
d == 7 and with different list lengths shows that the new
algorithm attains essentially the same error performance as
the quantized decoder of [1] for lists of length M == 6 and
suffers degradation in performance of 0.1 - 0.2 db for lists of
length M == 2.

The outline of the paper is as follows. In section II basic
definitions are given. In Section III the iterative decoder algo­
rithm is presented. Section IV introduces method of grouping
Gaussian mixture into a single Gaussian. In section V an algo­
rithm of reducing a Gaussian mixture into a smaller Gaussian
mixture is presented. The new parametric decoder is defined in
section VI. In section VII implementation considerations are
presented followed by an analysis of the algorithm efficiency
and simulation results in section VIII.

II. BASIC DEFINITIONS

A. Lattices and Lattice Decoding

An n dimensional lattice in lRn is defined as the set of all
linear combinations of n linearly independent vectors in lRn ,

with integer coefficients. The matrix G, whose columns consist
of the n linearly independent vectors in lRn , is called the
generator matrix of the lattice. Each lattice point is constructed
from the multiplication ;f == GQ, where Q E zn. The Voronoi
cell of a lattice point, is the set of points in lRn that are closest
to the lattice point. In a squared generator matrix, the Voronoi
cell volume equals Idet(G) I.

The setting in [1] assumes lattice decoding on the uncon­
strained AWGN channel. The unconstrained AWGN channel
required a generalized definition of channel capacity, produced

978-1-4244-4313-0/09/$25.00 ©2009 IEEE 744

ISIT 2009, Seoul, Korea, June 28 - July 3, 2009

(4)

(5)

m==l, ... d

m == 1, ... d

where i is an integer. We also define:

d- L hk ·Xkr m - ---

k=l hm
k#m

B. Check Node

Without loss of generality we consider check node j. We
define the variable nodes that take place in check equation j
as Xl, ... ,Xd. According to (1) we know that:

X
m

== _",_. ~ t hk 'Xk

hm hmk=l
k#m

(1)

in [3]. When applied to lattices, the channel capacity implies
that there exist a lattice G of high enough dimension n that
enables transmission with arbitrary small error probability, if

and only if (J2 < y'ld;;~G)12, where (J2 is the noise variance.

B. Low Density Lattice Codes

LDLC (Low Density lattice Codes) are determined by their
non-singular squared generator matrix G. The lattice parity
check matrix is defined as H == G- I , and in LDLC H is a
sparse matrix. Every lattice point ;f satisfies:

(3)

A "Latin square LDLC" is defined as an LDLC whose parity
check matrix H is a Latin square matrix, i.e. a matrix where
every row and every column has the same d non-zero values,
except for random signs and a possible change of order. The
sorted non-zero sequence of these d values, hI 2:: h2 2:: ... 2::
hd > 0, will be referred to as the generating sequence of the
Latin square LDLC. In this paper (as in [1] and [2]) we use
Latin square LDLC and we normalize the Voronoi cell volume
such that Idet(G) I == 1.

III. Low DENSITY LATTICE CODES ITERATIVE DECODER

Using LDLC over the AWGN channel, we have:

(2)

where ~ is the lattice code word, ~ rv N (Q, a 2 I), a 2 is
each dimension noise variance and I is the n-dimensional unit
matrix.
The LDLC decoder estimates the PDFs: !xily(xllL), i ==
1 ... n. Analogously to LDPC iterative decoding, each iter­
ation of the LDLC decoder of [1] is composed of 2 steps:
passing messages to the check nodes, that represent the parity
check equations (a line in the parity check matrix H), and
passing messages to the variable nodes that represent elements
in the transmitted code word. In each iteration, without loss
of generality, variable node l sends d different messages to
d different check nodes (the equations where variable node l
takes place) and vice versa. For the AWGN channel, the passed
messages consist of Gaussian mixtures, where each Gaussian
in the mixture can be determined by 3 parameters - mean m,
variance V and amplitude a:

a (X-'Tn)2

a·N(x m V) == --e-~
" V21fV

Specifically, the LDLC decoding algorithm steps are as fol­
lows:

A. Initialization

Without loss of generality we consider variable node l. Each
of the d messages are initialized to N(x, Yz, a 2) , denoted as
the channel observation, where yz is the l'th element of lL
defined in (2).

In [1] it has been shown that the d - 1 random variables that
take place in the right side of equation (4) can be referred
as statistically independent random variables, hence the PDF
of r m in (5) is a convolution between the incoming mes­
sages after expanding/streching according to the coefficients
hI, ... ,hd . As the check equation integer solution i in (4) is
unknown, the PDF of r m is periodically expanded to period of
h~ in order to yield the check node message sent to X m . In this
way, X m message takes into account all possible solutions. As
the PDF of each incoming message is a Gaussian mixture, the
PDF of r m is also a Gaussian mixture and so is the message
of X m . Each Gaussian in the message of X m consists of the
convolution between d - 1 different Gaussians from d - 1
different incoming messages, and a shift of h~' where l can
have any value in Z. Denote as, mk, Vk, ak k == 1, ... ,d - 1,
the means, variances and amplitudes of certain d-1 Gaussians
from d - 1 different incoming messages that take place in the
convolution, and a shift of h~. The Gaussian parameters of
the corresponding Gaussian in the message of X m will be:

_ l ",d-l hk"mk V _ ",d-l h~"Vk d _
m x - h - L.Jk=1 -h-' x - L.Jk=1~ an ax -

nd
-

l
'Tn 'Tn 'Tn

k=l ak·

C. Variable Node

Without loss of generality we consider variable node j. We
denote the d check nodes that send messages to variable node j
as CI, ... ,Cd and their periodic messages as PI (X), ... ,Pd (X)
(the messages are Gaussian mixtures). The estimated PDFs
are:

m == 1, ... ,d

(6)
The periodic messages, sent by the check nodes, consist of
Gaussian mixtures. The channel observation consists of a
single Gaussian. Multiplication of Gaussian mixtures yields
a Gaussian mixture. Hence, the estimated PDF lm,xjly(xllL)
is also a Gaussian mixture. Each Gaussian in 1m,xj I~ (XIlL)
consists of the multiplication between d-1 different Gaussians
from d - 1 different incoming messages, and the channel
observation. Denote as, mk, Vk, ak k == 1, ... , d, the means,
variances and amplitudes of certain d -1 Gaussians from d-1
different messages, and the channel observation. The Gaussian

745

parameters of the corresponding Gaussian in lm,xjly(xly) will
be: -

VA- 1 m A- VA ",d rru; andf - ",d -l' f - f· ~k=1 Vk
L. k=l V k

v j d d (rnk- rnj)2

-TLk=lLj=k+l vk"v· d
a A - e J TI a

f - / 1 • k=1 k-V (27r)d-lVi rr~=l v,
D. Final Decision

Consider the same definitions as in subsection III-C. In
• • A d 2

this case. !xjly(xllL) ex TIk=1 Pk(X) . N(x, Yj, (J") where

Xj == argmaxx!Xjl]f.JxllL) and ~ == lH· f.l.

The number of Gaussians in the messages grows expo­
nentially as a function of the number of iterations. In order
to attain practical parametric decoding, the Gaussians in the
messages need to be grouped into a constant number of
Gaussians M.

IV. GROUPING A GAUSSIAN MIXTURE INTO A SINGLE

GAUSSIAN

In order to have a constant parametric list length, we would
like to group certain chosen Gaussians into a single Gaussian.
The chosen Gaussians constitute a Gaussian mixture:

L

GM(x) == L ak . N(x, mk, Vk) (7)
k=1

L

GM(x) = L bk . N(x, mk, Vk) bk = ~k (8)
k=1 Ll=1 a;

where GM(x) is the normalized Gaussian mixture. We would
like to approximate GM(x) with the Gaussian that minimizes
the Kullback-Leibler divergence (D) between them. Hence,
we would like to find:

(m, V) == argminm,vD(GMIIN(x,m, V)) (9)

The Gaussian that minimizes the divergence in (9) is the
second moment matched Gaussian, i.e. the Gaussian with the
same mean and variance as GM(x). Thus, the Gaussian that
approximates (7) is:

L

GM(x) == L ak . N(x, iii, V) == aN(x, tii, V) (10)
k=1

and the Gaussian mixture aprroximation parameters are:
tii == L~=1 bk . mk, a == Lk=1 ak and V == L~=1 bk . Vk +
bk . (mk - m)2.

V. GAUSSIAN MIXTURE REDUCTION

We would like to reduce a Gaussian mixture with L
Gaussians as defined in (7) to a Gaussian mixture with M
Gaussians at most (M < L), using the method described
on section IV. We suggest 2 algorithms that yield the same
output. The difference between the algorithms reflects in the
computational complexity. The first algorithm finds which
Gaussians to consolidate in a straight forward fashion, while
the second algorithm sorts the lists of Gaussians and only then
begins the consolidation process. The different approaches
have different complexities.

ISIT 2009, Seoul, Korea, June 28 - July 3, 2009

A. Straight Forward Algorithm

The Gaussian mixture of length L can be represented by 3
parametric lists of length L that contain each Gaussian mean,
variance and amplitude. We define another list of length L,
named "amplitude to s.t.d ratio" list (s.t.d stands for standard
deviation), that contains the ratio JV;, k == 1, ... , L.
Each element in this list is proportional to the coefficient of the
exponent in the Gaussian defined in (3). We refer to those lists
as the "long lists". The reduced Gaussian mixture of length M,
is represented by 3 parametric lists of length M, in a similar
manner to the long lists. We refer to the reduced Gaussian
mixture lists of length M as the "short lists".

step 1: Initialize the long list length. ListLength == L.
step 2: Choose the Gaussian with the strongest value in

the amplitude to s.t.d ratio list. Without loss of generality,
assume that this Gaussian mean, variance and amplitude are
mk, Vk, ak respectively.

step 3: Define a range of length 2A around mi:

RANGE == {xlmk - A ::; x ::; tru; + A} (11)

Go over the Gaussians means in the long lists mi, l ==
1, ... , ListLength, group the Gaussians that satisfy mi E

RANGE into a single Gaussian according to (7)-(10). Add
the estimated single Gaussian mean, variance and amplitude
parameters to the short lists.

step 4: Assume that S Gaussians from the long lists were
grouped on step 3. Erase from the long lists those S Gaussians.
Update the long lists length ListLength == ListLength - S.

step 5: Repeat steps 2-4, either until ListLength == 0 or
M times.

In the end of the process, the Gaussian mixture with L
Gaussians is reduced to a Gaussian mixture with M Gaussians
at most; The computational complexity of this algorithm is
O(L· M).

B. Sort Algorithm

Build 4 pointer lists of length L (the long lists), Meanl.ist,
VarianceList, Amplitudel.ist and AmplitudeStdRatioList, for
the mean, variance, amplitude and amplitude to s.t.d ratio of
the Gaussian mixture. Each element in each list points to the
elements that come before and after it in the list. Also each
element in each list points to elements in the other lists that
correspond to the same Gaussian. We also define m; as the
mean value in the l'th element of Meanl.ist.

step 1: Update the long lists length ListLength == L.
step 2: Sort Meanl.ist and AmplitudeStdRatioList in de­

scending order. Now the mean and amplitude to s.t.d lists are
sorted.

step 3: Choose the strongest element in AmplitudeStdRa­
tiol.ist (actually this is the first element in the sorted list).
Without loss of generality, assume that the strongest element
in AmplitudeStdRatioList points to element k inside MeanList.

step 4: Mark element k inside Meanl.ist. The mean value
in the k'th element of MeanList is mk, define a 2A range
around mk as in (11).

step 5: Initialize k; == kd == k.

746

step 6: ku == ku + 1. If mku E RANGE, mark element
ku in MeanList and repeat step 6. If mku t/:. RANGE or we
reached the end of the list, continue to step 7.

step 7: kd == kd - 1. If mkd E RANGE, mark element
kd in Meaniist and repeat step 7. If m«, t/:. RANGE or we
reached the beginning of the list, continue to step 8.

step 8: Assume that S elements inside Meanl.ist have been
marked. Take the S marked mean values and its correspond­
ing variances and amplitudes and group the Gaussians they
represent into a single Gaussian according to (7)-(10). Add
the estimated single Gaussian mean, variance and amplitude
parameters into the short lists.

step 9: Extract the marked elements from Meanl.ist and its
corresponding values from the rest of the long lists. Update
the long lists length ListLength == ListLength - S. The
sorted lists remain sorted (As every subset of a sorted list is
also a sorted list).

step 10: Repeat steps 3-9, either until ListLength == 0 or
M times.

Note that the computational complexity of step 2 is
O(L log2 L), and the computational complexity of steps 3­
10 is 0 (L) (going over the L elements in the list). Hence, the
computational complexity is dominated by O(L log2 L).

As aforementioned, both algorithms yield exactly the same
output. The complexity depends on Land M. Given certain
M and L we choose the algorithm that has smaller complexity.

VI. PARAMETRIC LDLC DECODER

We now incorporate the reduction method developed in
section V into the LDLC decoder. In the parametric algorithm
the data-base of the passed messages consists of lists of means,
variances and amplitudes. Both in the check nodes and the
variable nodes, there are n . d lists, each of length M. M
represents the number of Gaussians in each message.

A. Variable Node

From (6) we can see that each variable node message
consists of multiplication of d - 1 messages and the channel
observation. Without loss of generality we consider variable
node j. We denote the Gaussian mixture reduction algorithm
defined in section V as GM ReductionAL9 (G M (x) , M),
where GM (x) is the Gaussian mixture that needs to be
reduced, and M is the maximum number of Gaussians in the
reduced Gaussian mixture. The algorithm returns the reduced
Gaussian mixture with M Gaussians at most. In order to
calculate the variable node messages we use the Forward­
Backward algorithm described in [2].
For i == 2, ... ,d, the forward step:

A 2
FW1(x) == N(x,Yj,2a)
FWi(x) == FWi-1(X) . Pi-l(X)
FWi(x) == GMReductionAlg(FWi(x), M).
The backward step:
BWd(X) == N(x, Yj, 2(2)

BWd- i+1(X) == Bwd-i+2(X) . Pd-i+2(X)
Bwd-i+l(X) == GMReductionAlg(BWd- i+1(x),M).

Combining both steps, for l == 1, ... , d, the variable node

ISIT 2009, Seoul, Korea, June 28 - July 3, 2009

messages:
FWBWz(x) == FWz(x) . BWz(x)
lz,xjlll(xly) ex GMReductionAlg(FWBWz(x),M).

B. Check Node

Calculating rm : The calculation of the PDF of rm in
(5) requires d - 2 convolutions. We calculate the PDF using
the Forward-Backward algorithm in a similar manner to the
method described in VI-A.

Replication: The check node messages in the LDLC decoder
are periodic. The periodic extension requires infinite number
of replications of each Gaussian in the PDF of rrn- In the
parametric algorithm we would like to take a finite number
of replications, K, instead of the infinite periodic extension.
Without loss of generality let us consider the check node
messages that are sent to variable node j. Since we do not
know the transmitted code word, for every Gaussian in every
message that arrives to variable node j, we take the K
replications that are closest to Yj. The replications affect the
Gaussians mean values and produces lists of length K . M.
Such method resembles the behavior in the quantized decoder,
in which after the multiplication with the channel observation,
as a result of the fact that the channel observation function
is quantized, only the closest replications to the channel
observation mean Yj remains.
Taking a finite number of replications increases the error
probability due to the fact that the tail of the Gaussian
noise may not be taken into account. In order to attain error
probability that asymptotically converges to zero, K should
increase asymptotically as well.

C. Final Decision

In variable node j, in order to find Xj we need to find the
argument that maximizes IXj (xl]L), and so we need to calculate
its quantized function according to the parameters lists. We
define a range of length J around Yj with resolution of ~.

We calculate the Gaussian mixture in this range according to
the parameters lists.

Note, the computational complexity of calculating the quan­
tized PDF directly can be avoided by estimating Xj == Ej(x).
In this case a problem can occur in estimating the correct
lattice point, in cases where there is more than 1 hypothesis
with similar probability at different lattice points. Such a
decision rule can increase the symbol error rate , but we did
not see significant degradation in the simulation.

VII. IMPLEMENTATION CONSIDERATIONS

In order to avoid numerical instabilities, we define a mini­
mum value to the variance. We define it as MinimumV ar ==
a . a 2 . In the variable nodes, a certain Gaussian with variance
V, receives a new variance of MAX(MinimumVar, V).

One of the strongest properties of the LDLC is the duality
between the variable nodes and the check nodes. For instance,
while the variable node performs product over the input
messages, the check node performs convolution. In a similar
manner, while setting the ranges length to group Gaussians

747

ISIT 2009, Seoul, Korea, June 28 - July 3,2009

Fig. 1. Symbol Error Rate for different list lengths and block lengths

[I] N. Sommer, M. Feder, and O. Shalvi, "Low Density Lattice Codes"
submitted to IEEE Transactions on Iriformation Theory .

[2] B. Kurkoski, and 1. Dauwels, "Message-Passing Decoding of Lattices
Using Gaussian Mixtures", IEEE ISIT 2008.

[3] G. Poltyrev, "On Coding Without Restrictions for The AWGN Channel",
IEEE Trans. Inform. Theory , vol. 40, pp. 409-417, Mar. 1994.

sort algorithm, described on subsection V-B, the computational
complexity is O(n ·d ·t ·K·M2 10g2(K ·M2)) . For small M the
straight forward algorithm is more efficient and for large M
the sort algorithm is more efficient. The computational com­
plexity of the algorithm suggested in [2] is O(n .d .t .K2 .M4) ,

and so the new algorithm significantly reduces the complexity
(for the same values, by an order of magnitude). The com­
putational complexity of the quantized algorithm suggested
in [1] is dominated by O(n · d · t · -! . log2(-!))' While the
complexity is not expressed by the same terms, for typical
values that yield the same performance there is also an order
of magnitude improvement compared to the quantized decoder.

The simulation results for M = 2/6, d = 7 (d = 5
for n = 100), K = 3, ranges length (correspond to A
defined in (11)) of VariableNodeRangeLength = 0.2,
CheckNodeRangeLength = 0.05 and MinimumVar =
0.03 ·(J"2 are presented in figure 1. We used the same generating
sequence as in [1]. The zero code word was used and maxi­
mum amount of 200 iterations was allowed. For M = 6 the
performance is identical to the quantized decoder performance.
For M = 2 and V ariableNodeRangeLength = 0.6, there
is a slight degradation that varies between 0.1 - 0.2 db (no
degradation for n = 100).

IX. CONCLUSION

In this work we presented a new parametric algorithm for
the LDLC decoder. The new algorithm was shown to be more
efficient than algorithms suggested in previous works. We
believe that LDLC can suit communication systems with high
spectral efficiency.

X. ACKNOWLEDGMENT

Support and interesting discussions with Naftali Sommer
are gratefully acknowledged.

REFERENCES

-0- Quanll,le<l,n=l(X)

<> M=6.n=100
- - M=2.n=100

- . - Cuan tLZed,n-llXX>
- t;>-- M=6,n- 1000
- 0- M=2.n=1000

cceoreec.o-rcoco
- e - M=6,n=10000

• M=2,n= 10000

- Quanl lZed,n=l QlXllX)

* M=6.n=10Cl0lX1
- - - M=2.n=10Cl0lX1

1,5 2 25
Distance from channel capacity

05

as defined in (11), we distinguish between the range length
in the variable node and the range length in the check node.
We define the range length to group Gaussians in the variable
node as V ariableNodeRangeLength and the range length in
the check node as CheckNodeRangeLength. Those ranges
correspond to A, defined also in (11).

In the check node, since the convolution can cause relatively
large changes in the Gaussians means and enables the conver­
gence to the correct code word, it is highly important to keep
the uniqueness of each Gaussian after the convolution. Hence,
we choose CheckNodeRangeLength to be relatively small.
In the variable node, each multiplication is done between d
Gaussians. Consider a Gaussian with very small variance, and
mean value m which is very close to a certain lattice point,
we shall refer to such Gaussian as hypothesis. Also suppose
that this Gaussian is multiplied with d - 1 Gaussians with
relatively large variances (this is the LDLC typical behavior).
The multiplication yields Gaussian with mean value that is
close but not necessarily equal to m. Considering all the
multiplications the small variance Gaussian takes place in, we
receive Gaussians with mean values that spread around m that
support the same hypothesis and strengthen it. We would like
to take a relatively large range length that will group them
and will enable to sustain the hypothesis. Hence we choose
V ariableNodeRangeLength to be relatively large. Since the
mean values of those Gaussians are relatively close to m, such
grouping would not lead to a significant bias in the lattice code
word estimation.

We would like to emphasize the tradeoff between the
number of Gaussians, M, and the range length A. Consider
the value TotalRange = M . A. First we increase the number
of Gaussians M, while reducing A such that TotalRange re­
mains constant. In this case, the algorithm computational com­
plexity increases. The algorithm "resolution" also increases
and the algorithm gives better approximation to the theoretic
algorithm. Now we decrease the number of Gaussians M
while increasing A. In this case, the computational complexity
decreases. On the other hand the increase in the chance of
grouping several hypothesis together, can result in the loss of
the correct hypothesis and degradation in the performance.

VIII. STORAGE, COMPLEXITY AND SIMULATION RESULTS

In both the check nodes and the variable nodes, there are
n- d lists of length M. The storage requirement is O(n :d -M).
The storage requirement is similar to the storage requirement
in [2]. In [1], the storage requirement was Oin -d »-{f), where
L is the quantized PDF range length and ~ is the resolution. If
we take M = 6, L = 4 and ~ = 2~6' we can see a significant
improvement in the storage requirement in comparison to the
quantized decoder (improvement by a factor of over 100).

In the parametric algorithm the complexity is dominated by
the Gaussian mixture reduction algorithm described on section
V. In the straight forward algorithm, described on subsection
V-A, the computational complexity is O(n . d . t . K . M 3) ,

where M is the number of Gaussians in each list, K is the
number of replications and t is the number of iterations. In the

748

